

DBK-003-1015026

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

June - 2022

Physics: Paper - 502

(Electrodynamics & Relativity) (New Course)

Faculty Code: 003

Subject Code: 1015026

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions:

- (1) Attempt any five questions.
- (2) Symbols have their usual meaning.
- (3) Figure on right hand sides indicates full marks.
- 1 (A) Do as directed:

4

- (1) The inverse of _____ is called resistivity.
- (2) $\nabla \times B = \mu_0 J$ is known as _____ law.
- (3) What is Neumann formula?
- (4) The equation $\frac{dp_{mech}}{dt} = -\mu_0 \in_0 \frac{d}{dt} \iiint Sd\tau + \iint T da$ is the statement of conservation of _____ in electrodynamics.
- (B) Two metallic objects are embedded in weakly conducting material of conductivity σ . Show that the resistance between them is related to the capacitance

of the arrangement by $R = \frac{\epsilon_0}{\sigma C^*}$

(C) Prove Neumann formula.

3

2

(D) Explain energy stored in magnetic field.

5

2	(A)	Do as directed:	4
		(1) Far an ideal source of emf the net force on charges is	
		(2) $\iint Edl = -\iint \frac{\partial B}{\partial t} da \text{ is Faraday's law in } \underline{\qquad}.$	
		(3) What Ampere's law in integral form?	
		(4) The energy per unit time per unit area transported by the fields is called the	
	(B)	A cylindrical resistor of cross sectional area a and	2
		Length L is made from material having conductivity σ . If the potential is constant over each end, the potential difference between the ends is V , what current flows?	
	(C)	Write Maxwell's equations.	3
	(D)	Explain Poynting theorem,	5
3	(A)	Do as directed.	4
		(1) Mechanical wave required to propagate.	
		(2) Generally sinusoidal wave can be represented as	
		(3) Relation between wave number k and wavelength λ is	
		(4) Different frequencies in the visible range correspond to different colours, such waves are called	
	(B)	The intensity of sunlight hitting the earth is about	2
		1300 W/m^2 . If sunlight strikes a perfect absorber, what pressure does it exert?	
	(C)	Explain boundary conditions.	3

(D) Derive wave equation.

5

4 (A) Do as directed.

- (1) What is k in equation, $f(z,t) = A\cos[k(z-vt)+\delta]$?
- (2) In electromagnetic wave, electric field and magnetic field are _____ to the direction of propagation.
- (3) What is the formula of Poynting vector?
- (4) The average power per unit area transported by an Electromagnetic wave is called _____.
- (B) Find the Poynting vector for given electric field 2 $E = 10 \sin(\omega t kz) \hat{y} \text{ and magnetic field } B = \frac{10k}{\omega} \sin(\omega t kz) \hat{x}.$
- (C) Explain polarization. 3
- (D) Explain energy and momentum in electromagnetic **5** waves.
- **5** (A) Do as directed:

- (1) In Maxwell's equations; $\nabla \times E = \underline{\hspace{1cm}}$.
- (2) In equation, $\nabla^2 \mu_0 \in_0 \varphi \frac{\partial^2}{\partial t^2} = \Box^2 \cdot \Box^2$ is called _____.
- (3) The equations, $V(r,t) = \frac{1}{4\pi \in 0} \int \frac{\rho(r', t_r)}{r} d\tau'$ and

$$A(r,t) = \frac{\mu_0}{4\pi} \int \frac{J(r', t_r)}{r} d\tau'$$
 are called ______.

(4) $B(r, t) = \frac{\mu_0}{4\pi} \int \left[\frac{J(r', t_r)}{r^2} + \frac{J(r', t_r)}{cr} \right] \times \hat{r} d\tau'$ is time

dependent generalization of the _____ law.

- (B) What are the electric and magnetic fields of the potentials $\varphi = 0$ and A = k(xzi yzj)?
- (C) Explain advance time and give scalar vector potential **3** in form of it.
- (D) Explain retarded potential. 5
- 6 (A) Do as directed:
 - (1) $\Box^2 V = \frac{-\rho}{\epsilon_0}$ and $\Box^2 A = \mu_0 J$ are four dimensional versions of _____ equation.
 - (2) $E(r, t) = \frac{1}{4\pi \in 0} \int \left[\frac{\rho(r', t_r)}{r^2} \hat{r} + \frac{\dot{\rho}(r', t_r)}{c r} \hat{r} \frac{\dot{J}(r', t_r)}{c^2 r} \right] \cdot d\tau'$

is the time dependent generalization of _____ law.

- (3) The four dimensional Poisson's equations are reduce to $\nabla^2 V = \frac{-\rho}{\epsilon_0}$ and $\nabla^2 A = -\mu_0 J$ in _____ case.
- (4) $V(r, t) = \frac{1}{4\pi \in_0} \frac{qc}{(rc-tv)}$ and $A(r, t) = \frac{\mu_0}{4\pi} \frac{qcv}{(rc-tv)}$ are

the _____ potentials for the moving point charge.

- (B) Find electric field that would give rise to the potentials; $\varphi = 0$ and $A = \frac{\mu_0 k}{4c} (ct |x|)^2 \hat{z}$.
- (C) Derive Jefimenko equations. 3
- (D) Explain electric and magnetic fields of a moving point charge with constant velocity.

7 (A) Do as directed.

- 4
- (1) Radiation means _____ flow of energy away from the source.
- (2) In static limit, i.e. $\omega \to 0$,

$$V(r, \theta, t) = \frac{p_0 \cos \theta}{4\pi \in \frac{r}{0}} \left[\frac{-\omega}{c} \sin \left\{ \omega \left(t - \frac{r}{c} \right) \right\} + \frac{1}{r} \cos \left\{ \omega \left(t - \frac{r}{c} \right) \right\} \right]$$

Reduces to $V = \underline{\hspace{1cm}}$.

- (3) White sunlight consists of the entire range of frequencies of _____ light.
- (4) For perfect magnetic dipole, the current loop to be very _____.
- (B) Draw figures of physical dipole and perfect dipole. 2
- (C) How does EM waves produced?
- (D) Write E and B and find total power radiated by electric dipole. 5
- 8 (A) Do as directed:

- 4
- (1) To convert physical dipole into perfect dipole separation Distance to be _____.
- (2) The effect of a red sunset becomes more pronounced if the Atmosphere contains _____ particles.
- (3) When a = 0 in Taylor series, the series is called _____ series.
- (4) The formula of power radiated, $P = \frac{\mu_0 q^2 a^2}{6\pi c}$

is known as _____ formula.

- (B) Explain static source do not radiate.
- 2
- (C) Describe blueness of sky and redness of sunset.
- 3
- (D) Describe the physical basis of the radiation reaction.
- **9** (A) Do as directed:

4

5

- (1) Two events that are simultaneous in one inertial system are not _____ in another.
- (2) What is formula of Lorentz contraction?
- (3) $\overline{x} = x vt$, $\overline{y} = y$, $\overline{z} = z$ and $\overline{t} = t$ are called ______ transformation.
- (4) $\overline{u} = \frac{u v}{\left(1 \frac{uv}{c^2}\right)}$ is known as Einstein's _____ rure.
- (B) A muon is travelling through the laboratory at three-fifth the speed of light. How long does it last?
- (C) Discuss relativity of simultaneity. 3
- (D) Explain the space time diagram. 5
- 10 (A) Do as directed:

- 4
- (1) Dimensions perpendicular to the _____ are not contracted.
- (2) $P = \frac{mu}{\sqrt{1 \frac{u^2}{c^2}}}$ is the relativistic _____ of an object

of rest mass m travelling at ordinary velocity u.

(3) In every closed system, the total relativistic _____ and momentum are conserved.

- (4) In relativistic dynamics, a charged particle placed in a Uniform electric field have a _____ motion under a constant force.
- (B) Invert the following equation to get the formula for u 2

in terms of V. $\left(1 - \frac{u^2}{c^2}\right)v^2 = u^2$.

- (C) Write Einstein's postulates of special relativity. 3
- (D) Describe the Minkowski force. 5